extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C42.C2)⋊1C2 = C4⋊C4.84D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):1C2 | 128,757 |
(C2×C42.C2)⋊2C2 = C24.268C23 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):2C2 | 128,1173 |
(C2×C42.C2)⋊3C2 = C24.569C23 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):3C2 | 128,1174 |
(C2×C42.C2)⋊4C2 = C23.354C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):4C2 | 128,1186 |
(C2×C42.C2)⋊5C2 = C23.360C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):5C2 | 128,1192 |
(C2×C42.C2)⋊6C2 = C24.572C23 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):6C2 | 128,1205 |
(C2×C42.C2)⋊7C2 = C23.375C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):7C2 | 128,1207 |
(C2×C42.C2)⋊8C2 = C24.301C23 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):8C2 | 128,1221 |
(C2×C42.C2)⋊9C2 = C23.390C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):9C2 | 128,1222 |
(C2×C42.C2)⋊10C2 = C23.419C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):10C2 | 128,1251 |
(C2×C42.C2)⋊11C2 = C23.456C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):11C2 | 128,1288 |
(C2×C42.C2)⋊12C2 = C23.458C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):12C2 | 128,1290 |
(C2×C42.C2)⋊13C2 = C42.172D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):13C2 | 128,1294 |
(C2×C42.C2)⋊14C2 = C42.175D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):14C2 | 128,1298 |
(C2×C42.C2)⋊15C2 = C42.185D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):15C2 | 128,1343 |
(C2×C42.C2)⋊16C2 = C42.188D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):16C2 | 128,1361 |
(C2×C42.C2)⋊17C2 = C42.190D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):17C2 | 128,1365 |
(C2×C42.C2)⋊18C2 = C42.194D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):18C2 | 128,1373 |
(C2×C42.C2)⋊19C2 = C42.198D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):19C2 | 128,1396 |
(C2×C42.C2)⋊20C2 = C23.590C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):20C2 | 128,1422 |
(C2×C42.C2)⋊21C2 = C24.401C23 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):21C2 | 128,1426 |
(C2×C42.C2)⋊22C2 = C24.408C23 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):22C2 | 128,1436 |
(C2×C42.C2)⋊23C2 = C23.607C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):23C2 | 128,1439 |
(C2×C42.C2)⋊24C2 = C23.611C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):24C2 | 128,1443 |
(C2×C42.C2)⋊25C2 = C23.620C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):25C2 | 128,1452 |
(C2×C42.C2)⋊26C2 = C23.621C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):26C2 | 128,1453 |
(C2×C42.C2)⋊27C2 = C23.625C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):27C2 | 128,1457 |
(C2×C42.C2)⋊28C2 = C42.199D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):28C2 | 128,1552 |
(C2×C42.C2)⋊29C2 = C42.439D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):29C2 | 128,1583 |
(C2×C42.C2)⋊30C2 = C43⋊14C2 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):30C2 | 128,1593 |
(C2×C42.C2)⋊31C2 = C2×D4.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):31C2 | 128,1804 |
(C2×C42.C2)⋊32C2 = C42.449D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):32C2 | 128,1812 |
(C2×C42.C2)⋊33C2 = C2×C42.78C22 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):33C2 | 128,1862 |
(C2×C42.C2)⋊34C2 = C2×C42.29C22 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):34C2 | 128,1865 |
(C2×C42.C2)⋊35C2 = C42.244D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):35C2 | 128,1874 |
(C2×C42.C2)⋊36C2 = C42.284D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):36C2 | 128,1964 |
(C2×C42.C2)⋊37C2 = C42.286D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):37C2 | 128,1966 |
(C2×C42.C2)⋊38C2 = C2×C22.33C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):38C2 | 128,2183 |
(C2×C42.C2)⋊39C2 = C2×C22.34C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):39C2 | 128,2184 |
(C2×C42.C2)⋊40C2 = C2×C22.35C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):40C2 | 128,2185 |
(C2×C42.C2)⋊41C2 = C2×C23.41C23 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):41C2 | 128,2189 |
(C2×C42.C2)⋊42C2 = C2×C22.46C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):42C2 | 128,2202 |
(C2×C42.C2)⋊43C2 = C2×C22.47C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):43C2 | 128,2203 |
(C2×C42.C2)⋊44C2 = C2×D4⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):44C2 | 128,2204 |
(C2×C42.C2)⋊45C2 = C22.93C25 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):45C2 | 128,2236 |
(C2×C42.C2)⋊46C2 = C22.101C25 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):46C2 | 128,2244 |
(C2×C42.C2)⋊47C2 = C22.104C25 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):47C2 | 128,2247 |
(C2×C42.C2)⋊48C2 = C2×C22.56C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):48C2 | 128,2259 |
(C2×C42.C2)⋊49C2 = C2×C22.57C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):49C2 | 128,2260 |
(C2×C42.C2)⋊50C2 = C22.142C25 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):50C2 | 128,2285 |
(C2×C42.C2)⋊51C2 = C22.148C25 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):51C2 | 128,2291 |
(C2×C42.C2)⋊52C2 = C22.152C25 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2):52C2 | 128,2295 |
(C2×C42.C2)⋊53C2 = C2×C23.36C23 | φ: trivial image | 64 | | (C2xC4^2.C2):53C2 | 128,2171 |
(C2×C42.C2)⋊54C2 = C2×C23.37C23 | φ: trivial image | 64 | | (C2xC4^2.C2):54C2 | 128,2175 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C42.C2).1C2 = C42.396D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2).1C2 | 128,202 |
(C2×C42.C2).2C2 = C2×C42.2C22 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).2C2 | 128,255 |
(C2×C42.C2).3C2 = C42.408D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2).3C2 | 128,260 |
(C2×C42.C2).4C2 = C42.71D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2).4C2 | 128,266 |
(C2×C42.C2).5C2 = C42.123D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).5C2 | 128,721 |
(C2×C42.C2).6C2 = C42.437D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).6C2 | 128,723 |
(C2×C42.C2).7C2 = C42.124D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).7C2 | 128,724 |
(C2×C42.C2).8C2 = C42.128D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2).8C2 | 128,730 |
(C2×C42.C2).9C2 = C4⋊C4.85D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).9C2 | 128,758 |
(C2×C42.C2).10C2 = C2.(C8⋊Q8) | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).10C2 | 128,791 |
(C2×C42.C2).11C2 = C42.33Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).11C2 | 128,1062 |
(C2×C42.C2).12C2 = C23.218C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).12C2 | 128,1068 |
(C2×C42.C2).13C2 = C23.252C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).13C2 | 128,1102 |
(C2×C42.C2).14C2 = C23.253C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).14C2 | 128,1103 |
(C2×C42.C2).15C2 = C23.264C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).15C2 | 128,1114 |
(C2×C42.C2).16C2 = C23.353C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).16C2 | 128,1185 |
(C2×C42.C2).17C2 = C23.362C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).17C2 | 128,1194 |
(C2×C42.C2).18C2 = C23.406C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).18C2 | 128,1238 |
(C2×C42.C2).19C2 = C42⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).19C2 | 128,1282 |
(C2×C42.C2).20C2 = C42.35Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).20C2 | 128,1284 |
(C2×C42.C2).21C2 = C42.174D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).21C2 | 128,1297 |
(C2×C42.C2).22C2 = C42.181D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).22C2 | 128,1316 |
(C2×C42.C2).23C2 = C42.191D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).23C2 | 128,1366 |
(C2×C42.C2).24C2 = C42.195D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).24C2 | 128,1374 |
(C2×C42.C2).25C2 = C42⋊10Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).25C2 | 128,1392 |
(C2×C42.C2).26C2 = C23.613C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).26C2 | 128,1445 |
(C2×C42.C2).27C2 = C23.619C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).27C2 | 128,1451 |
(C2×C42.C2).28C2 = C23.626C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).28C2 | 128,1458 |
(C2×C42.C2).29C2 = C42.201D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).29C2 | 128,1554 |
(C2×C42.C2).30C2 = C43.15C2 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).30C2 | 128,1591 |
(C2×C42.C2).31C2 = C2×Q8.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).31C2 | 128,1807 |
(C2×C42.C2).32C2 = C2×C42.30C22 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).32C2 | 128,1866 |
(C2×C42.C2).33C2 = C2×C8.5Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).33C2 | 128,1890 |
(C2×C42.C2).34C2 = C2×C8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).34C2 | 128,1893 |
(C2×C42.C2).35C2 = M4(2)⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2).35C2 | 128,1898 |
(C2×C42.C2).36C2 = C42.288D4 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 64 | | (C2xC4^2.C2).36C2 | 128,1968 |
(C2×C42.C2).37C2 = C2×Q8⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).37C2 | 128,2208 |
(C2×C42.C2).38C2 = C2×C22.58C24 | φ: C2/C1 → C2 ⊆ Out C2×C42.C2 | 128 | | (C2xC4^2.C2).38C2 | 128,2262 |
(C2×C42.C2).39C2 = C4×C42.C2 | φ: trivial image | 128 | | (C2xC4^2.C2).39C2 | 128,1037 |